skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jiuqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanomaterial‐based stretchable electronics composed of conductive nanomaterials in elastomer can seamlessly integrate with human skin to imperceptibly capture electrophysiological signals. Despite the use of transfer printing to form embedded structures, it remains challenging to facilely and stably integrate conductive nanomaterials with thin, low‐modulus, adhesive elastomers. Here, a facile‐yet‐simple laser‐induced graphene (LIG)‐assisted patterning and transfer method is demonstrated to integrate patterned silver nanowires onto an ultra‐low modulus silicone adhesive as ultra‐conformal epidermal electrodes. The resulting thin epidermal electrodes of ≈50 µm exhibit a low sheet resistance (0.781 Ω sq−1), tissue‐like Young's modulus (0.53 MPa), strong self‐adhesion, and excellent breathability. The breathable electrodes dynamically conformed to the skin with low contact impedance allow for long‐term, high‐fidelity monitoring of electrophysiological signals in complex environments (even during exercise and heavy sweating). Moreover, the LIG‐assisted transfer can provide a robust interface to establish a stable connection between the soft electrodes and rigid hardware. The large‐scale fabrication further provides an eight‐channel electromyography system combined with a deep learning algorithm for gesture classification and recognition with remarkable accuracy (95.4%). The results from this study also provide design guidelines and fabrication methods of the next‐generation epidermal electronics for long‐term dynamic health monitoring, prosthetic control, and human‐robot collaborations. 
    more » « less
  2. Abstract Skin‐interfaced high‐sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin‐attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low‐cost laser scribing of an adhesive composite with polyimide powders and amine‐based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser‐induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real‐time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process. 
    more » « less